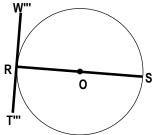
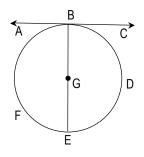
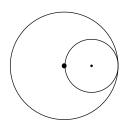

XSLO: I can solve problems involving tangents and radii.

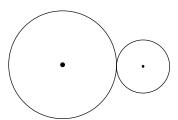
- (1) Let's use what we learned in 8.8 about chords and diameters to see what happens when we translate the chord to the edge of the circle.
 - (a) Determine whether each segment is part of a secant or tangent Circle your choice.

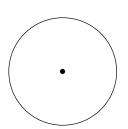

\overline{WT}	secant	tangent
$\overline{W'T'}$	secant	tangent
$\overline{W"T"}$	secant	tangent
$\overline{W "'T "'}$	secant	tangent


(b) Determine whether each statement is true or false. Circle your choice.

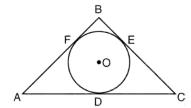
$\overline{WT} \perp \overline{RS}$	true	false
$\overline{W'T'} \perp \overline{RS}$	true	false
$\overline{W"T"} \perp \overline{RS}$	true	false
$\overline{W'''T'''} \perp \overline{RS}$	true	false

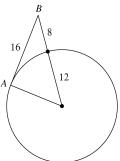

(c) The **TANGENT RADIUS THEOREM** states that when a radius (\overline{OR}) intersects a tangent line ($\overline{W'''T'''}$) at the point of tangency, the radius and tangent are ______ (which means they form angles.) Mark the diagram with this information.


(2) Here is a way to justify the relationship:
For the diagram below, label each arc and angle with its measure. Justify your answer.


a)

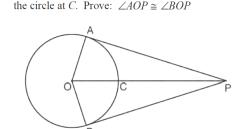
b)

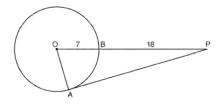

c)


- (4) For each problem below, sketch and label diagrams and show work. Circle the correct answer for multiple choice questions...
- (a) 230 Line segment AB is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?
 - right 1
 - 2 obtuse
 - scalene
 - 4 isosceles

- (b) 231 Tangents \overline{PA} and \overline{PB} are drawn to circle O from an external point, P, and radii \overline{OA} and \overline{OB} are drawn. If $m\angle APB = 40$, what is the measure of $\angle AOB$?
 - 1 140°
 - 100° 2
 - 3 70°
 - 4 50°

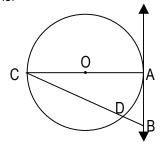
(C) 250 In the diagram below, \overline{AB} , \overline{BC} , and \overline{AC} are tangents to circle O at points F, E, and D, respectively, AF = 6, CD = 5, and BE = 4.

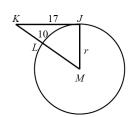

(d) Find the measure of the radius


What is the perimeter of $\triangle ABC$?

- 1 15 2
- 25
- 30
- 60

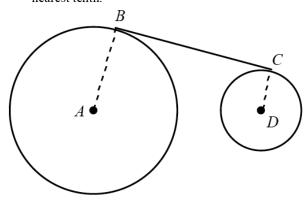
(e) 374 In the diagram below, \overline{PA} and \overline{PB} are tangent to circle O, \overline{OA} and \overline{OB} are radii, and \overline{OP} intersects the circle at C. Prove: $\angle AOP \cong \angle BOP$


(f) 233 In the diagram below of $\triangle PAO$, \overline{AP} is tangent to circle O at point A, OB = 7, and BP = 18.

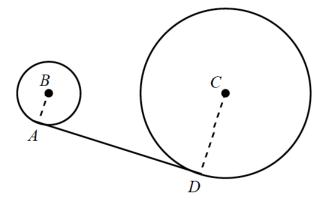

What is the length of \overline{AP} ?

- 1 10
- 2 12
- 3 17
- 4 24

(g) Find the radius measure given: $m\overline{CB} = 10$, $m\overline{AB} = 6$



(h) \overline{KJ} is tangent to $\mathbf{\Theta}M$ at J (not drawn to scale). Find the length of the radius r, to the nearest tenth.


[A] 18.9 [B] 9.4 [C] 10.8 [D] 19.7

(i) \overline{BC} is tangent to $\bigcirc A$ at B and to $\bigcirc D$ at C (not drawn to scale). If AB = 12, BC = 18, and DC = 3, find the length of \overline{AD} , to the nearest tenth.

(j) \overline{AD} is tangent to both circles in the figure (not drawn to scale). If BA = 9, AD = 23, and CD = 17, find the length of \overline{BC} to the nearest tenth.

[A] 32.5 [B] 18.8 [C] 24.7 [D] 24.4

